Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.214
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731849

ABSTRACT

Tumors of the head and neck, more specifically the squamous cell carcinoma, often show upregulation of the Hedgehog signaling pathway. However, almost nothing is known about its role in the sinonasal adenocarcinoma, either in intestinal or non-intestinal subtypes. In this work, we have analyzed immunohistochemical staining of six Hedgehog pathway proteins, sonic Hedgehog (SHH), Indian Hedgehog (IHH), Patched1 (PTCH1), Gli family zinc finger 1 (GLI1), Gli family zinc finger 2 (GLI2), and Gli family zinc finger 3 (GLI3), on 21 samples of sinonasal adenocarcinoma and compared them with six colon adenocarcinoma and three salivary gland tumors, as well as with matching healthy tissue, where available. We have detected GLI2 and PTCH1 in the majority of samples and also GLI1 in a subset of samples, while GLI3 and the ligands SHH and IHH were generally not detected. PTCH1 pattern of staining shows an interesting pattern, where healthy samples are mostly positive in the stromal compartment, while the signal shifts to the tumor compartment in tumors. This, taken together with a stronger signal of GLI2 in tumors compared to non-tumor tissues, suggests that the Hedgehog pathway is indeed activated in sinonasal adenocarcinoma. As Hedgehog pathway inhibitors are being tested in combination with other therapies for head and neck squamous cell carcinoma, this could provide a therapeutic option for patients with sinonasal adenocarcinoma as well.


Subject(s)
Adenocarcinoma , Hedgehog Proteins , Immunohistochemistry , Signal Transduction , Zinc Finger Protein Gli2 , Humans , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Male , Female , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Middle Aged , Pilot Projects , Aged , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Paranasal Sinus Neoplasms/metabolism , Paranasal Sinus Neoplasms/pathology , Adult , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins , Nuclear Proteins
2.
Nat Commun ; 15(1): 3365, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664376

ABSTRACT

Hedgehog (Hh) signaling relies on the primary cilium, a cell surface organelle that serves as a signaling hub for the cell. Using proximity labeling and quantitative proteomics, we identify Numb as a ciliary protein that positively regulates Hh signaling. Numb localizes to the ciliary pocket and acts as an endocytic adaptor to incorporate Ptch1 into clathrin-coated vesicles, thereby promoting Ptch1 exit from the cilium, a key step in Hh signaling activation. Numb loss impedes Sonic hedgehog (Shh)-induced Ptch1 exit from the cilium, resulting in reduced Hh signaling. Numb loss in spinal neural progenitors reduces Shh-induced differentiation into cell fates reliant on high Hh activity. Genetic ablation of Numb in the developing cerebellum impairs the proliferation of granule cell precursors, a Hh-dependent process, resulting in reduced cerebellar size. This study highlights Numb as a regulator of ciliary Ptch1 levels during Hh signal activation and demonstrates the key role of ciliary pocket-mediated endocytosis in cell signaling.


Subject(s)
Cerebellum , Cilia , Hedgehog Proteins , Nerve Tissue Proteins , Patched-1 Receptor , Signal Transduction , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Cilia/metabolism , Animals , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Mice , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cerebellum/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Endocytosis , Cell Differentiation , Cell Proliferation , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mice, Knockout
3.
Cell Rep ; 43(4): 114083, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38602877

ABSTRACT

A common cause of deafness in humans is dysregulation of the endocochlear potential generated by the stria vascularis (SV). Thus, proper formation of the SV is critical for hearing. Using single-cell transcriptomics and a series of Shh signaling mutants, we discovered that the Shh receptor Patched1 (Ptch1) is essential for marginal cell (MC) differentiation and SV formation. Single-cell RNA sequencing analyses revealed that the cochlear roof epithelium is already specified into discrete domains with distinctive gene expression profiles at embryonic day 14, with Gsc as a marker gene of the MC lineage. Ptch1 deficiency leads to defective specification of MC precursors along the cochlear basal-apical regions. We demonstrated that elevated Gli2 levels impede MC differentiation through sustaining Otx2 expression and maintaining the progenitor state of MC precursors. Our results uncover an early specification of cochlear non-sensory epithelial cells and establish a crucial role of the Ptch1-Gli2 axis in regulating the development of SV.


Subject(s)
Cell Differentiation , Cochlea , Patched-1 Receptor , Stria Vascularis , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Animals , Mice , Stria Vascularis/metabolism , Stria Vascularis/cytology , Cochlea/metabolism , Cochlea/embryology , Cochlea/cytology , Signal Transduction , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics
4.
Oncologist ; 29(5): 377-383, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38438322

ABSTRACT

Adult medulloblastoma (MB) is a rare disease affecting 0.6 persons per million adults over 19 years of age. The SHH-activated/TP53-wild type is the most common subtype, accounting for 60% of adult MBs, being characterized by mutations in PTCH1, SMO, or the TERT promoter. Several small studies demonstrate objective but short-lived responses to SMO inhibitors such as vismodegib or sonidegib. Like other oncogene-addicted solid tumors, detection of the corresponding drivers through liquid biopsy could aid in the molecular diagnosis and monitoring of the disease through less invasive procedures. However, most studies have only evaluated cerebrospinal fluid as the ctDNA reservoir, and very limited evidence exists on the role of liquid biopsy in plasma in patients with primary central nervous system tumors, including MB. We present the case of a 26-year-old patient with a recurrent MB, in which next-generation sequencing (FoundationOne CDx) revealed a mutation in PTCH1, allowing the patient to be treated with vismodegib in second line, resulting in a durable benefit lasting for 1 year. Using an in-house digital PCR probe, the PTCH1 mutation could be tracked in ctDNA during treatment with first-line chemotherapy and while on treatment with vismodegib, demonstrating a precise correlation with the radiological and clinical behavior of the disease.


Subject(s)
Anilides , Circulating Tumor DNA , Medulloblastoma , Mutation , Patched-1 Receptor , Pyridines , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/blood , Medulloblastoma/pathology , Pyridines/therapeutic use , Patched-1 Receptor/genetics , Adult , Anilides/therapeutic use , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/blood , Male , Female
5.
Dis Model Mech ; 17(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38411252

ABSTRACT

Patched 1 (PTCH1) is the primary receptor for the sonic hedgehog (SHH) ligand and negatively regulates SHH signalling, an essential pathway in human embryogenesis. Loss-of-function mutations in PTCH1 are associated with altered neuronal development and the malignant brain tumour medulloblastoma. As a result of differences between murine and human development, molecular and cellular perturbations that arise from human PTCH1 mutations remain poorly understood. Here, we used cerebellar organoids differentiated from human induced pluripotent stem cells combined with CRISPR/Cas9 gene editing to investigate the earliest molecular and cellular consequences of PTCH1 mutations on human cerebellar development. Our findings demonstrate that developmental mechanisms in cerebellar organoids reflect in vivo processes of regionalisation and SHH signalling, and offer new insights into early pathophysiological events of medulloblastoma tumorigenesis without the use of animal models.


Subject(s)
Cerebellar Neoplasms , Induced Pluripotent Stem Cells , Medulloblastoma , Humans , Mice , Animals , Medulloblastoma/genetics , Medulloblastoma/metabolism , Medulloblastoma/pathology , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Hedgehog Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Organoids/metabolism , Patched Receptors
6.
Article in Russian | MEDLINE | ID: mdl-37898882

ABSTRACT

The exploration of molecular genetic mechanisms that underlie carcinogenesis, hereditary factors of various oncological diseases, including basal cell carcinoma, the most common type of skin cancer is especially actual and significant for target strategies of public health. The diagnosis of basal cell carcinoma is based on complex clinical, radiologic and genetic examination data. The further research in the field of somatic or hereditary mutations in genes associated with basal cell carcinoma, including Patched 1 (PTCH1), Patched 2 (PTCH2), Smoothed (SMO) continue to be topical. The strategies of primary prevention of basal cell carcinoma, discussions of complex issues of decision-making concerning treatment at primary health care level, training courses and development of guidelines for general practitioners and interdisciplinary recommendations for effective early diagnosis and comprehensive care of basal cell carcinoma are to be suggested.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Humans , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Carcinoma, Basal Cell/diagnosis , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/prevention & control , Skin Neoplasms/diagnosis , Skin Neoplasms/genetics , Skin Neoplasms/prevention & control , Molecular Biology
7.
Am J Physiol Cell Physiol ; 325(3): C770-C779, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37575058

ABSTRACT

Patched homolog 1 (PTCH1) has been proven to facilitate cell proliferation and self-renewal in esophageal cancer (EC). The present study intended to exploit the influence of PTCH1 on EC cells and the potential mechanisms. PTCH1 and methyltransferase-like 3 (METTL3) expression were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot in EC cell lines. Following the loss- and gain-of-function assays, cell proliferation was examined by cell counting kit (CCK)-8 and clone formation assays, invasion and migration by Transwell and scratch assays, and the sphere-forming ability of stem cells by cell sphere-forming assay. The expression of stemness genes NANOG homeobox protein (NANOG), octamer-binding transcription factor 4 (Oct4), and sex-determining region Y-box 2 (SOX2) was detected by Western blot. Methylated RNA immunoprecipitation (Me-RIP) assay was performed to test N6-methyladenosine (m6A) modification levels of PTCH1 mRNA, RIP and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) assays to assess the binding of METTL3 to PTCH1, and actinomycin D treatment to examine PTCH1 mRNA stability. A xenograft tumor model in nude mice was established for further in vivo verification. PTCH1 and METTL3 expression was high in EC cells. Knockdown of METTL3 reduced m6A level and stability of PTCH1 mRNA. Knockdown of PTCH1 or METTL3 declined invasion, proliferation, migration, and NANOG, Oct4, and SOX2 levels in EC cells, and reduced sphere-forming abilities of EC stem cells. Overexpression of PTCH1 abolished the suppressive effect of METTL3 knockdown on EC cells in vitro. METTL3 knockdown repressed tumor growth in nude mice, which was negated by further overexpressing PTCH1. METTL3 facilitated growth and stemness of EC cells via upregulation of PTCH1 expression by enhancing PTCH1 m6A modification.NEW & NOTEWORTHY PTCH1 has been proved to facilitate cell proliferation and self-renewal in esophageal cancer. We studied the upstream regulation mechanism of PTCH1 by METTL3 through m6A modification. Our results provide a new target and theoretical basis for the treatment of esophageal cancer.


Subject(s)
Esophageal Neoplasms , Methyltransferases , Mice , Animals , Humans , Methylation , Methyltransferases/genetics , Mice, Nude , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Stem Cells/metabolism , Esophageal Neoplasms/genetics , RNA, Messenger/genetics
8.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 223-229, 2023 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-37283107

ABSTRACT

Two male patients with bifid rib-basal cell nevus-jaw cyst syndrome (BCNS) were admitted to Department of Stomatology, the First Affiliated Hospital of Bengbu Medical College due to radiological findings of multiple low density shadows in the jaw. Clinical and imaging findings showed thoracic malformation, calcification of the tentorium cerebellum and falx cerebrum as well as widening of the orbital distance. Whole exon high-throughput sequencing was performed in two patients and their family members. The heterozygous mutations of c.C2541C>A(p.Y847X) and c.C1501C>T(p.Q501X) in PTCH1 gene were detected in both patients. Diagnosis of BCNS was confirmed. The heterozygous mutations of PTCH1 gene locus were also found in the mothers of the two probands. Proband 1 showed clinical manifestations of low intelligence, and heterozygous mutations of c.C2141T(p.P714L) and c.G3343A(p.V1115I) were detected in FANCD2 gene. Proband 2 had normal intelligence and no FANCD2 mutation. The fenestration decompression and curettage of jaw cyst were performed in both patients. Regular follow-up showed good bone growth at the original lesion, and no recurrence has been observed so far.


Subject(s)
Basal Cell Nevus Syndrome , Nevus , Humans , Male , Basal Cell Nevus Syndrome/genetics , Basal Cell Nevus Syndrome/diagnosis , Mutation , Patched-1 Receptor/genetics , Pedigree , Ribs/abnormalities
9.
Phytomedicine ; 115: 154776, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37087793

ABSTRACT

BACKGROUND: The multi-drug resistance is an inherent weakness in the chemotherapeutics of non-small cell lung cancer occurring frequently all over the world. Clinically, ginseng and Chinese medicinal prescriptions including ginseng usually used as anti-tumor adjuncts due to its characteristic of qi-invigorating, which could improve the curative effect of chemotherapy drugs and reduce their toxic side effects. Triterpenoid saponins are the crucial active ingredients in Panax ginseng, and Ginsenoside Rb1 is of the highest quantities. However, the research on the tumor drug-resistance reversal effect and mechanism of ginsenoside Rb1 is still not clear. PURPOSE: This study aimed to systematically estimate the reversal activity of Ginsenoside Rb1 on cisplatin-insensitivity of A549/DDP cells and to reveal its prospective molecular mechanism. METHODS: MTT assay were conducted to evaluate the reversal activity on cisplatin-insensitivity of A549/DDP cells of Ginsenoside Rb1in vitro, and the behavior was also studied by establishing a subcutaneous transplanted tumor model of A549/DDP in BALB/c-nu mice. In addition, P-gp ATPase activity assay, cisplatin accumulation assay, Annexin V-FITC apoptosis assay, real-time qPCR analysis and western blotting analysis were used to clarify the potential mechanism. RESULTS: Ginsenoside Rb1 could effectively reverse the cisplatin-resistance of A549/DDP in vitro and vivo. And after the co-treatment of Ginsenoside Rb1 plus cisplatin, the accumulation of cisplatin increased in A549/DDP cells, which was accompanied with the down-regulation of the mRNA and protein expression levels of ABCB1, SHH, PTCH1 and GLI2. Besides, the apoptosis-inducing ability of cisplatin improved by the relative regulation on the protein expression level of Bax and Bcl-2. Far more importantly, the changes of CYP3A4 mRNA and protein levels were not significant. CONCLUSION: Ginsenoside Rb1 could increase the concentration of intracellular cisplatin and improve the insensitivity for cisplatin on A549/DDP cells. Even better, there was perhaps no unpredictable CYP3A4-mediated pharmacokinetic interactions after the combination of Ginsenoside Rb1 plus cisplatin. Ginsenoside Rb1 was a probable reversal agent for the cisplatin-insensitivity of A549/DDP cells, with a bifunction of inhibiting the efflux of two drug pumps (P-gp and PTCH1) by targeting ABCB1 and Hedgehog (Hh) pathway. In general, this research laid the groundwork for the development of a new reversal agent for the cisplatin-insensitivity of NSCLC.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Ginsenosides , Lung Neoplasms , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Lung Neoplasms/drug therapy , Cytochrome P-450 CYP3A , Cell Line, Tumor , Hedgehog Proteins , Drug Resistance, Neoplasm , Apoptosis , Cell Proliferation , Patched-1 Receptor
10.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835134

ABSTRACT

Studies have demonstrated that autoantibodies to tumor-associated antigens (TAAs) may be used as efficient biomarkers with low-cost and highly sensitive characteristics. In this study, an enzyme-linked immunosorbent assay (ELISA) was conducted to analyze autoantibodies to paired box protein Pax-5 (PAX5), protein patched homolog 1 (PTCH1), and guanine nucleotide-binding protein subunit alpha-11 (GNA11) in sera from Hispanic Americans including hepatocellular carcinoma (HCC) patients, patients with liver cirrhosis (LC), patients with chronic hepatitis (CH), as well as normal controls. Meanwhile, 33 serial sera from eight HCC patients before and after diagnosis were used to explore the potential of these three autoantibodies as early biomarkers. In addition, an independent non-Hispanic cohort was used to evaluate the specificity of these three autoantibodies. In the Hispanic cohort, at the 95.0% specificity for healthy controls, 52.0%, 44.0%, and 44.0% of HCC patients showed significantly elevated levels of autoantibodies to PAX5, PTCH1, and GNA11, respectively. Among patients with LC, the frequencies for autoantibodies to PAX5, PTCH1, and GNA11 were 32.1%, 35.7%, and 25.0%, respectively. The area under the ROC curves (AUCs) of autoantibodies to PAX5, PTCH1, and GNA11 for identifying HCC from healthy controls were 0.908, 0.924, and 0.913, respectively. When these three autoantibodies were combined as a panel, the sensitivity could be improved to 68%. The prevalence of PAX5, PTCH1, and GNA11 autoantibodies has already occurred in 62.5%, 62.5%, or 75.0% of patients before clinical diagnosis, respectively. In the non-Hispanic cohort, autoantibodies to PTCH1 showed no significant difference; however, autoantibodies to PAX5, PTCH1, and GNA11 showed potential value as biomarkers for early detection of HCC in the Hispanic population and they may monitor the transition of patients with high-risk (LC, CH) to HCC. Using a panel of the three anti-TAA autoantibodies may enhance the detection of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Autoantibodies , Patched-1 Receptor , Biomarkers, Tumor , Liver Cirrhosis , Hepatitis, Chronic , Hispanic or Latino , PAX5 Transcription Factor , GTP-Binding Protein alpha Subunits
11.
Article in English | WPRIM (Western Pacific) | ID: wpr-982038

ABSTRACT

Two male patients with bifid rib-basal cell nevus-jaw cyst syndrome (BCNS) were admitted to Department of Stomatology, the First Affiliated Hospital of Bengbu Medical College due to radiological findings of multiple low density shadows in the jaw. Clinical and imaging findings showed thoracic malformation, calcification of the tentorium cerebellum and falx cerebrum as well as widening of the orbital distance. Whole exon high-throughput sequencing was performed in two patients and their family members. The heterozygous mutations of c.C2541C>A(p.Y847X) and c.C1501C>T(p.Q501X) in PTCH1 gene were detected in both patients. Diagnosis of BCNS was confirmed. The heterozygous mutations of PTCH1 gene locus were also found in the mothers of the two probands. Proband 1 showed clinical manifestations of low intelligence, and heterozygous mutations of c.C2141T(p.P714L) and c.G3343A(p.V1115I) were detected in FANCD2 gene. Proband 2 had normal intelligence and no FANCD2 mutation. The fenestration decompression and curettage of jaw cyst were performed in both patients. Regular follow-up showed good bone growth at the original lesion, and no recurrence has been observed so far.


Subject(s)
Humans , Male , Basal Cell Nevus Syndrome/diagnosis , Mutation , Nevus , Patched-1 Receptor/genetics , Pedigree , Ribs/abnormalities
12.
Int J Oncol ; 61(6)2022 Dec.
Article in English | MEDLINE | ID: mdl-36205138

ABSTRACT

The Hedgehog (Hh) signaling pathway is essential for normal embryonic development, while its hyperactivation in the adult organism is associated with the development of various cancers. The role of the Hh signaling pathway in ovarian cancer has not been sufficiently investigated. Therefore, the present study investigated the role of protein patched homolog 1 (PTCH1), a component of the Hh signaling pathway, and changes in the promoter methylation status of the corresponding gene in a cohort of low­(LGSC) and high­grade serous ovarian carcinomas (HGSC) and HGSC cell lines (OVCAR8 and OVSAHO). PTCH1 protein expression level was analyzed using immunohistochemistry in tissue samples and immunofluorescence and western blotting in cell lines. DNA methylation patterns of the PTCH1 gene were analyzed using methylation­specific PCR. PTCH1 protein expression was significantly higher in HGSCs and LGSCs compared with controls (healthy ovaries and fallopian tubes). Similarly, ovarian cancer cell lines exhibited significantly higher PTCH1 protein expression compared with a normal fallopian tube non­ciliated epithelial cell line (FNE1). PTCH1 protein fragments of different molecular weights were detected in all cell lines, indicating possible proteolytic cleavage of this protein, resulting in the generation of soluble N­terminal fragments that are translocated to the nucleus. DNA methylation of the PTCH1 gene promoter was exclusively detected in a proportion of HGSC (13.5%) but did not correlate with protein expression. PTCH1 protein was highly expressed in serous ovarian carcinoma tissues and cell lines, while PTCH1 promoter methylation was only detected in HGSC. Further investigation is required to elucidate the possible mechanisms of PTCH1 activation in serous ovarian carcinomas.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Adult , Carcinoma, Ovarian Epithelial , Cystadenocarcinoma, Serous/pathology , Female , Hedgehog Proteins , Humans , Ovarian Neoplasms/pathology , Patched-1 Receptor/genetics
13.
Diagn Pathol ; 17(1): 82, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36242048

ABSTRACT

BACKGROUND: Orthokeratinized odontogenic cyst (OOC) is a rare developmental odontogenic cyst of the jaw. It was originally believed to be a variant of odontogenic keratocyst (OKC) but is now considered to be a distinct entity. OOC usually presents as a single lesion and recurs infrequently. On the other hand, OKC often presents with multiple lesions and displays locally aggressive behavior and a high recurrence rate associated with the protein patched homolog 1 (PTCH1) gene mutation. Multiple OOC cases are extremely rare and seem to be aggressive, but their pathogenesis is not fully understood. This study aimed to determine the clinical, pathological, and genetic characteristics of multiple OCC. METHODS: Three cases of multiple OOC were evaluated for clinical and histological findings, and immunohistochemical expression of Ki-67 and Bcl-2. Furthermore, PTCH1 mutations were analyzed by next-generation sequencing using a custom panel to cover the entire exon of PTCH1. RESULTS: The three cases of multiple OOC included two men and one woman with a mean age of 25.3 years old (range, 18-38 years old). Each case had two or three OOCs (total of seven OOCs), all of which were simultaneously detected. Of the seven OOCs that manifested as multiple jaw cysts, seven (100%) occurred in the posterior regions, four (57.1%) occurred in the mandible, and four (57.1%) were associated with an impacted tooth. Histological examination revealed cysts lined by orthokeratinized stratified squamous epithelium. Immunohistochemistry showed a low Ki-67 labeling index and no Bcl-2 expression in the seven OOCs. No pathogenic PTCH1 mutations were detected in any of the seven OOCs. None of the patients had any other symptoms or signs of recurrence at the last follow-up (6-60 months). CONCLUSION: Multiple OOCs appeared to occur more often in younger patients than solitary OOC. Both multiple and solitary OOCs may be related diseases within the entity of odontogenic cysts. Multiple OOCs are clinicopathologically and genetically distinct from OKC.


Subject(s)
Odontogenic Cysts , Odontogenic Tumors , Adolescent , Adult , Female , Humans , Immunohistochemistry , Ki-67 Antigen , Male , Odontogenic Cysts/genetics , Odontogenic Cysts/pathology , Odontogenic Tumors/diagnosis , Odontogenic Tumors/genetics , Patched-1 Receptor/genetics , Young Adult
14.
Cells ; 11(19)2022 09 27.
Article in English | MEDLINE | ID: mdl-36230980

ABSTRACT

Genome-wide association studies (GWAS) have shown that variants of patched homolog 1 (PTCH1) are associated with lung function abnormalities in the general population. It has also been shown that sonic hedgehog (SHH), an important ligand for PTCH1, is upregulated in the airway epithelium of patients with asthma and is suggested to be involved in airway remodeling. The contribution of hedgehog signaling to airway remodeling and inflammation in asthma is poorly described. To determine the biological role of hedgehog signaling-associated genes in asthma, gene silencing, over-expression, and pharmacologic inhibition studies were conducted after stimulating human airway epithelial cells or not with transforming growth factor ß1 (TGFß1), an important fibrotic mediator in asthmatic airway remodeling that also interacts with SHH pathway. TGFß1 increased hedgehog-signaling-related gene expression including SHH, GLI1 and GLI2. Knockdown of PTCH1 or SMO with siRNA, or use of hedgehog signaling inhibitors, consistently attenuated COL1A1 expression induced by TGFß1 stimulation. In contrast, Ptch1 over-expression augmented TGFß1-induced an increase in COL1A1 and MMP2 gene expression. We also showed an increase in hedgehog-signaling-related gene expression in primary airway epithelial cells from controls and asthmatics at different stages of cellular differentiation. GANT61, an inhibitor of GLI1/2, attenuated TGFß1-induced increase in COL1A1 protein expression in primary airway epithelial cells differentiated in air-liquid interface. Finally, to model airway tissue remodeling in vivo, C57BL/6 wildtype (WT) and Ptch1+/- mice were intranasally challenged with house dust mite (HDM) or phosphate-buffered saline (PBS) control. Ptch1+/- mice showed reduced sub-epithelial collagen expression and serum inflammatory proteins compared to WT mice in response to HDM challenge. In conclusion, TGFß1-induced airway remodeling is partially mediated through the hedgehog signaling pathway via the PTCH1-SMO-GLI axis. The Hedgehog signaling pathway is a promising new potential therapeutic target to alleviate airway tissue remodeling in patients with allergic airways disease.


Subject(s)
Airway Remodeling , Asthma , Animals , Dermatophagoides pteronyssinus , Genome-Wide Association Study , Hedgehog Proteins/metabolism , Humans , Inflammation , Ligands , Matrix Metalloproteinase 2/genetics , Mice , Mice, Inbred C57BL , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Phosphates , Pyroglyphidae , RNA, Small Interfering , Transforming Growth Factor beta1/metabolism , Zinc Finger Protein GLI1/metabolism
15.
Cells ; 11(20)2022 10 13.
Article in English | MEDLINE | ID: mdl-36291078

ABSTRACT

Basal cell carcinoma (BCC) is one of the most common neoplasms in the population. A good prognosis and mainly non-aggressive development have made it underdiagnosed and excluded from the statistics. Due to the availability of efficient surgical therapy, BCC is sometimes overlooked in the search for novel therapies. Most clinicians are unaware of its complicated pathogenesis or the availability of effective targeted therapy based on Hedgehog inhibitors (HHI) used in advanced or metastatic cases. Nevertheless, the concomitance and esthetic burden of this neoplasm are severe. As with other cancers, its pathogenesis is multifactorial and complicated with a network of dependencies. Although the tumour microenvironment (TME), genetic aberrations, and risk factors seem crucial in all skin cancers, in BCC they all have become accessible as therapeutic or prevention targets. The results of this review indicate that a central role in the development of BCC is played by the Hedgehog (Hh) signalling pathway. Two signalling molecules have been identified as the main culprits, namely Patched homologue 1 (PTCH1) and, less often, Smoothened homologue (SMO). Considering effective immunotherapy for other neoplastic growths being introduced, implementing immunotherapy in advanced BCC is pivotal and beneficial. Up to now, the US Food and Drug Administration (FDA) has approved two inhibitors of SMO for the treatment of advanced BCC. Sonidegib and vismodegib are registered based on their efficacy in clinical trials. However, despite this success, limitations might occur during the therapy, as some patients show resistance to these molecules. This review aims to summarize novel options of targeted therapies in BCC and debate the mechanisms and clinical implications of tumor resistance.


Subject(s)
Antineoplastic Agents , Carcinoma, Basal Cell , Hedgehog Proteins , Skin Neoplasms , Smoothened Receptor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Basal Cell/drug therapy , Carcinoma, Basal Cell/metabolism , Hedgehog Proteins/antagonists & inhibitors , Hedgehog Proteins/metabolism , Signal Transduction , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Tumor Microenvironment , United States , Patched-1 Receptor/metabolism , Smoothened Receptor/antagonists & inhibitors , Smoothened Receptor/metabolism
16.
Genomics ; 114(6): 110507, 2022 11.
Article in English | MEDLINE | ID: mdl-36265746

ABSTRACT

The Hedgehog (HH) signaling plays key roles in embryogenesis and organogenesis, and its dysfunction causes a variety of human birth defects. Orofacial cleft (OFC) is one of the most common congenital craniofacial defects, and its etiology is closely related to mutations in multiple components in the HH pathway, including the PTCH1 receptor. A quantity of PTCH1 variants have been associated with OFC, but the pathogenicity and underlying mechanism of these variants have not been functionally validated. In our previous studies, we identified two PTCH1 variants (A392V and R945X) in two families with hereditary OFC. Here we explore the functional consequences of these two variants. In zebrafish embryos, microinjection of wild type PTCH1 mRNA causes curved body axis and craniofacial anomalies. In contrast, microinjection of A392V and R945X PTCH1 mRNAs results in much milder phenotypes, suggesting these two variants are loss-of-function mutations. In mammalian cells, A392V and R945X mutations reverse the inhibitory effect of PTCH1 on HH signaling. Biochemically, the two mutants PTCH1 show lower expression levels and shortened half-life, indicting these mutations decrease the stability of PTCH1. A392V and R945X mutations also appear to cause PTCH1 to localize away from vesicles. Taken together, our findings indicate that A392V and R945X variants are loss-of-function mutations that disrupt the function of PTCH1 and thus cause dysregulation of HH signaling, leading to the pathogenesis of OFC.


Subject(s)
Cleft Lip , Cleft Palate , Patched-1 Receptor , Zebrafish Proteins , Animals , Humans , Cleft Lip/genetics , Cleft Palate/genetics , Hedgehog Proteins/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics , Patched-1 Receptor/genetics
17.
Ophthalmic Surg Lasers Imaging Retina ; 53(9): 514-516, 2022 09.
Article in English | MEDLINE | ID: mdl-36107625

ABSTRACT

Gorlin syndrome is a rare autosomal dominant disorder with near complete penetrance. The underlying genetic mechanism is a mutation in a tumor suppressor gene. Thus far, mutations in patched homolog 1 and 2 genes (PTCH1 and PTCH2) and the suppressor of fused gene (SUFU) have been identified. The syndrome is characterized by neoplasms arising early in childhood as well as developmental abnormalities, including ophthalmic anomalies. We present the first case associating Gorlin syndrome with a rare retinal lesion known as solitary circumscribed retinal astrocytic proliferation (SCRAP). SCRAP is a benign, stable retinal tumor. For this reason, it is essential to differentiate it from similar retinal lesions that are associated with poor prognosis. [Ophthalmic Surg Lasers Imaging Retina 2022;53:514-516.].


Subject(s)
Basal Cell Nevus Syndrome , Basal Cell Nevus Syndrome/complications , Basal Cell Nevus Syndrome/diagnosis , Basal Cell Nevus Syndrome/genetics , Cell Proliferation , Child , Humans , Mutation , Patched-1 Receptor/genetics
18.
J Biochem Mol Toxicol ; 36(10): e23149, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35712856

ABSTRACT

Hepatic fibrosis (HF), a continuous wound-healing response of the liver to repeated injuries, is characterized by abnormal extracellular matrix (ECM) accumulation. Hepatic stellate cells (HSCs) are considered a major cell type for ECM production. However, recent evidence indicates the lack of effective treatments for HF. Hesperetin, a Traditional Chinese Medicine monomer, has been isolated from the fruit peel of Citrusaurantium L. (Rutaceae). Growing evidence suggests the partial function of hesperetin in HF treatment. A hesperetin derivative (HD) was synthesized in our laboratory to increase the bioavailability and the water solubility of hesperetin. In this study, we detected the functions of HD in a mouse model of CCl4 -induced HF and transforming growth factor-ß1-stimulated HSC-T6 cells, in vivo and in vitro. HD reduced histological damage and CCl4 -induced HF. Moreover, HD interference was associated with the activation of indicators in HSC-T6 cells, showing that HD is involved in HSCs activation in HF. Mechanistically, the Hedgehog pathway is involved in the HD treatment of HF, and HD may attenuate the aberrant expression of patched1. In conclusion, the studies indicate that HD may function as a potential antifibrotic Traditional Chinese Medicine monomer in HF therapy.


Subject(s)
Hedgehog Proteins , Hesperidin , Liver Cirrhosis , Patched-1 Receptor , Animals , Cell Line , Hedgehog Proteins/metabolism , Hesperidin/pharmacology , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Mice , Patched-1 Receptor/metabolism , Transforming Growth Factor beta1/metabolism
19.
Curr Med Chem ; 29(39): 6084-6099, 2022.
Article in English | MEDLINE | ID: mdl-35579168

ABSTRACT

OBJECTIVE: This research sought to explore the effect and mechanism of long non-coding RNA SNHG16 on esophageal cancer (EC) cell proliferation and self-renewal. METHODS: SNHG16 expression was measured in EC9706 and KYSE150 cells. EC9706 and KYSE150 cells were transfected with Lenti-SNHG16, sh-SNHG16, Lenti-protein patched homolog 1 (PTCH1), miR-802 mimic, or miR-802 inhibitor. Flow cytometry was used to sort cancer stem cells (CSCs) in EC9706 and KYSE150 cells. Cell proliferation in EC cells was measured, in addition to colony and tumorsphere numbers. The possible interactions among SNHG16, PTCH1, and miR-802 were identified by dual luciferase reporter and RNA pull-down assays. The expression of the genes in the Hedgehog pathway was detected. Nude mice were injected with SNHG16-silenced EC9706 cells to observe the tumorigenicity of EC9706 cells. RESULTS: Upregulated SNHG16 expression was found in CSCs, whose expression was decreased during the differentiation of CSCs. SNHG16 or PTCH1 overexpression or miR-802 inhibition promoted the proliferation, colony formation, and tumorsphere formation of EC9706 and KYSE150 cells as well as SOX2, OCT4, Bmi-1, and PTCH1 expression. Consistently, SNHG16 knockdown or miR-802 overexpression inhibited EC progression. Moreover, SNHG16 and PTCH1 were competitively bound to miR-802, and SNHG16 orchestrated the miR-802/PTCH1 axis to activate the Hedgehog pathway. SNHG16 silencing repressed the tumorigenicity of EC9706 in nude mice. CONCLUSION: Conclusively, SNHG16 acts as a sponge of miR-802 to upregulate PTCH1 and activate the Hedgehog pathway, thus promoting EC cell proliferation and selfrenewal.


Subject(s)
Esophageal Neoplasms , MicroRNAs , RNA, Long Noncoding , Animals , Cell Proliferation/genetics , Esophageal Neoplasms/genetics , Hedgehog Proteins , Mice , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Patched-1 Receptor/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
20.
J Oral Pathol Med ; 51(7): 659-665, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35569117

ABSTRACT

BACKGROUND: Orthokeratinized odontogenic cyst (OOC), a newly designated entity of odontogenic cysts, is an intraosseous jaw cyst that is entirely or predominantly lined by orthokeratinized squamous epithelium. The aim of this study was to report a large series of OOC to substantiate its clinicopathologic profiles and to investigate PTCH1 mutations in OOCs. METHOD: The clinicopathologic features of 167 OOCs from 159 patients were analyzed and the immunohistochemical expression of markers related to cell differentiation and proliferation was evaluated. Furthermore, PTCH1 mutations were analyzed in 14 fresh samples of OOC. RESULTS: OOCs occurred mostly in the third and fourth decades (60.4%) with a male predilection (66.7%). The lesions developed more often in the mandible than maxilla, primarily in the posterior mandible and ramus. Eight patients (5.0%) showed multiple locations of either bilateral posterior mandible (n = 6) or both the maxilla and mandible. Radiographically, the majority of OOCs (91.2%) showed a well-demarcated, unilocular radiolucency with 14 multilocular cases (8.8%). A follow-up of 131 patients (123 treated by enucleation with or without marsupialization and eight by peripheral ostectomy) revealed no recurrence during an average period of 4.56 years after surgery. Immunohistochemistry indicated lower proliferative activity and a varying epithelial differentiation pattern in OOC compared with odontogenic keratocysts (OKC). No PTCH1 mutation was detected, except for three known single nucleotide polymorphisms. CONCLUSION: The clinicopathological and molecular differences between OOC and OKC justified their separation, and unlike OKCs, OOCs did not harbor PTCH1 mutations, suggesting different pathogenesis underlying these two jaw cysts.


Subject(s)
Odontogenic Cysts , Odontogenic Tumors , Patched-1 Receptor/genetics , Epithelium/pathology , Female , Humans , Immunohistochemistry , Male , Mutation , Odontogenic Cysts/genetics , Odontogenic Cysts/pathology , Odontogenic Tumors/genetics , Odontogenic Tumors/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...